InMemoryExactNNIndex
docarray.index.backends.in_memory.InMemoryExactNNIndex
Bases: BaseDocIndex
, Generic[TSchema]
Source code in docarray/index/backends/in_memory.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
|
index_name
property
Return the name of the index in the database.
out_schema: Type[BaseDoc]
property
Return the original schema (without the parent_id from new_schema type)
DBConfig
dataclass
Bases: DBConfig
Dataclass that contains all "static" configurations of InMemoryExactNNIndex.
Source code in docarray/index/backends/in_memory.py
QueryBuilder
Bases: QueryBuilder
Source code in docarray/index/backends/in_memory.py
RuntimeConfig
dataclass
Bases: RuntimeConfig
Dataclass that contains all "dynamic" configurations of InMemoryExactNNIndex.
__contains__(item)
Checks if a given document exists in the index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item |
BaseDoc
|
The document to check. It must be an instance of BaseDoc or its subclass. |
required |
Returns:
Type | Description |
---|---|
bool
|
True if the document exists in the index, False otherwise. |
Source code in docarray/index/abstract.py
__delitem__(key)
Delete one or multiple Documents from the index, by id
.
If no document is found, a KeyError is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Union[str, Sequence[str]]
|
id or ids to delete from the Document index |
required |
Source code in docarray/index/abstract.py
__getitem__(key)
Get one or multiple Documents into the index, by id
.
If no document is found, a KeyError is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Union[str, Sequence[str]]
|
id or ids to get from the Document index |
required |
Source code in docarray/index/abstract.py
__init__(docs=None, db_config=None, **kwargs)
Initialize InMemoryExactNNIndex
Source code in docarray/index/backends/in_memory.py
build_query()
Build a query for this DocumentIndex.
Returns:
Type | Description |
---|---|
QueryBuilder
|
a new |
configure(runtime_config=None, **kwargs)
Configure the DocumentIndex.
You can either pass a config object to config
or pass individual config
parameters as keyword arguments.
If a configuration object is passed, it will replace the current configuration.
If keyword arguments are passed, they will update the current configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
runtime_config |
the configuration to apply |
None
|
|
kwargs |
individual configuration parameters |
{}
|
Source code in docarray/index/abstract.py
execute_query(query, *args, **kwargs)
Execute a query on the InMemoryExactNNIndex.
Can take two kinds of inputs:
- A native query of the underlying database. This is meant as a passthrough so that you can enjoy any functionality that is not available through the Document index API.
- The output of this Document index'
QueryBuilder.build()
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
List[Tuple[str, Dict]]
|
the query to execute |
required |
args |
positional arguments to pass to the query |
()
|
|
kwargs |
keyword arguments to pass to the query |
{}
|
Returns:
Type | Description |
---|---|
Any
|
the result of the query |
Source code in docarray/index/backends/in_memory.py
filter(filter_query, limit=10, **kwargs)
Find documents in the index based on a filter query
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_query |
Any
|
the filter query to execute following the query language of |
required |
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
DocList
|
a DocList containing the documents that match the filter query |
Source code in docarray/index/backends/in_memory.py
filter_batched(filter_queries, limit=10, **kwargs)
Find documents in the index based on multiple filter queries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_queries |
Any
|
the DB specific filter query to execute |
required |
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
List[DocList]
|
a DocList containing the documents that match the filter query |
Source code in docarray/index/abstract.py
filter_subindex(filter_query, subindex, limit=10, **kwargs)
Find documents in subindex level based on a filter query
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_query |
Any
|
the DB specific filter query to execute |
required |
subindex |
str
|
name of the subindex to search on |
required |
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
DocList
|
a DocList containing the subindex level documents that match the filter query |
Source code in docarray/index/abstract.py
find(query, search_field='', limit=10, **kwargs)
Find Documents in the index using nearest-neighbor search.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
Union[AnyTensor, BaseDoc]
|
query vector for KNN/ANN search. Can be either a tensor-like (np.array, torch.Tensor, etc.) with a single axis, or a Document |
required |
search_field |
str
|
name of the field to search on. Documents in the index are retrieved based on this similarity of this field to the query. |
''
|
limit |
int
|
maximum number of Documents to return |
10
|
Returns:
Type | Description |
---|---|
FindResult
|
a named tuple containing |
Source code in docarray/index/backends/in_memory.py
find_batched(queries, search_field='', limit=10, **kwargs)
Find Documents in the index using nearest-neighbor search.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries |
Union[AnyTensor, DocList]
|
query vector for KNN/ANN search. Can be either a tensor-like (np.array, torch.Tensor, etc.) with a, or a DocList. If a tensor-like is passed, it should have shape (batch_size, vector_dim) |
required |
search_field |
str
|
name of the field to search on. Documents in the index are retrieved based on this similarity of this field to the query. |
''
|
limit |
int
|
maximum number of documents to return per query |
10
|
Returns:
Type | Description |
---|---|
FindResultBatched
|
a named tuple containing |
Source code in docarray/index/backends/in_memory.py
find_subindex(query, subindex='', search_field='', limit=10, **kwargs)
Find documents in subindex level.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
Union[AnyTensor, BaseDoc]
|
query vector for KNN/ANN search. Can be either a tensor-like (np.array, torch.Tensor, etc.) with a single axis, or a Document |
required |
subindex |
str
|
name of the subindex to search on |
''
|
search_field |
str
|
name of the field to search on |
''
|
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
SubindexFindResult
|
a named tuple containing root docs, subindex docs and scores |
Source code in docarray/index/abstract.py
index(docs, **kwargs)
index Documents into the index.
Note
Passing a sequence of Documents that is not a DocList (such as a List of Docs) comes at a performance penalty. This is because the Index needs to check compatibility between itself and the data. With a DocList as input this is a single check; for other inputs compatibility needs to be checked for every Document individually.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs |
Union[BaseDoc, Sequence[BaseDoc]]
|
Documents to index. |
required |
Source code in docarray/index/backends/in_memory.py
num_docs()
persist(file=None)
Persist InMemoryExactNNIndex into a binary file.
Source code in docarray/index/backends/in_memory.py
python_type_to_db_type(python_type)
Map python type to database type. Takes any python type and returns the corresponding database column type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
python_type |
Type
|
a python type. |
required |
Returns:
Type | Description |
---|---|
Any
|
the corresponding database column type, or None if |
Source code in docarray/index/backends/in_memory.py
subindex_contains(item)
Checks if a given BaseDoc item is contained in the index or any of its subindices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item |
BaseDoc
|
the given BaseDoc |
required |
Returns:
Type | Description |
---|---|
bool
|
if the given BaseDoc item is contained in the index/subindices |
Source code in docarray/index/abstract.py
text_search(query, search_field='', limit=10, **kwargs)
Find documents in the index based on a text search query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
Union[str, BaseDoc]
|
The text to search for |
required |
search_field |
str
|
name of the field to search on |
''
|
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
FindResult
|
a named tuple containing |
Source code in docarray/index/abstract.py
text_search_batched(queries, search_field='', limit=10, **kwargs)
Find documents in the index based on a text search query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries |
Union[Sequence[str], Sequence[BaseDoc]]
|
The texts to search for |
required |
search_field |
str
|
name of the field to search on |
''
|
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
FindResultBatched
|
a named tuple containing |