WeaviateDocumentIndex
docarray.index.backends.weaviate.WeaviateDocumentIndex
Bases: BaseDocIndex
, Generic[TSchema]
Source code in docarray/index/backends/weaviate.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
|
DBConfig
dataclass
Bases: DBConfig
Dataclass that contains all "static" configurations of WeaviateDocumentIndex.
Source code in docarray/index/backends/weaviate.py
QueryBuilder
Bases: QueryBuilder
Source code in docarray/index/backends/weaviate.py
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
|
build(*args, **kwargs)
Build the query object.
Source code in docarray/index/backends/weaviate.py
filter(where_filter)
Find documents in the index based on a filter query
Parameters:
Name | Type | Description | Default |
---|---|---|---|
where_filter |
Any
|
a filter |
required |
Returns:
Type | Description |
---|---|
Any
|
self |
Source code in docarray/index/backends/weaviate.py
filter_batched(filters)
Find documents in the index based on a filter query
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filters |
filters |
required |
Returns:
Type | Description |
---|---|
Any
|
self |
Source code in docarray/index/backends/weaviate.py
find(query, score_name='certainty', score_threshold=None, **kwargs)
Find k-nearest neighbors of the query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
query vector for search. Has single axis. |
required | |
score_name |
Literal['certainty', 'distance']
|
either |
'certainty'
|
score_threshold |
Optional[float]
|
the threshold of the score |
None
|
Returns:
Type | Description |
---|---|
Any
|
self |
Source code in docarray/index/backends/weaviate.py
find_batched(queries, score_name='certainty', score_threshold=None)
Find k-nearest neighbors of the query vectors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries |
query vector for KNN/ANN search. Can be either a tensor-like (np.array, torch.Tensor, etc.) with a, or a DocList. If a tensor-like is passed, it should have shape |
required | |
score_name |
Literal['certainty', 'distance']
|
either |
'certainty'
|
score_threshold |
Optional[float]
|
the threshold of the score |
None
|
Returns:
Type | Description |
---|---|
Any
|
self |
Source code in docarray/index/backends/weaviate.py
text_search(query, search_field=None)
Find documents in the index based on a text search query
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
str
|
The text to search for |
required |
search_field |
Optional[str]
|
name of the field to search on |
None
|
Returns:
Type | Description |
---|---|
Any
|
self |
Source code in docarray/index/backends/weaviate.py
text_search_batched(queries, search_field=None)
Find documents in the index based on a text search query
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries |
Sequence[str]
|
The texts to search for |
required |
search_field |
Optional[str]
|
name of the field to search on |
None
|
Returns:
Type | Description |
---|---|
Any
|
self |
Source code in docarray/index/backends/weaviate.py
RuntimeConfig
dataclass
Bases: RuntimeConfig
Dataclass that contains all "dynamic" configurations of WeaviateDocumentIndex.
Source code in docarray/index/backends/weaviate.py
__contains__(item)
Checks if a given document exists in the index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item |
BaseDoc
|
The document to check. It must be an instance of BaseDoc or its subclass. |
required |
Returns:
Type | Description |
---|---|
bool
|
True if the document exists in the index, False otherwise. |
Source code in docarray/index/abstract.py
__delitem__(key)
Delete one or multiple Documents from the index, by id
.
If no document is found, a KeyError is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Union[str, Sequence[str]]
|
id or ids to delete from the Document index |
required |
Source code in docarray/index/abstract.py
__getitem__(key)
Get one or multiple Documents into the index, by id
.
If no document is found, a KeyError is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Union[str, Sequence[str]]
|
id or ids to get from the Document index |
required |
Source code in docarray/index/abstract.py
__init__(db_config=None, **kwargs)
Initialize WeaviateDocumentIndex
Source code in docarray/index/backends/weaviate.py
build_query()
configure(runtime_config=None, **kwargs)
Configure the WeaviateDocumentIndex.
You can either pass a config object to config
or pass individual config
parameters as keyword arguments.
If a configuration object is passed, it will replace the current configuration.
If keyword arguments are passed, they will update the current configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
runtime_config |
the configuration to apply |
None
|
|
kwargs |
individual configuration parameters |
{}
|
Source code in docarray/index/backends/weaviate.py
execute_query(query, *args, **kwargs)
Execute a query on the WeaviateDocumentIndex.
Can take two kinds of inputs:
- A native query of the underlying database. This is meant as a passthrough so that you can enjoy any functionality that is not available through the Document index API.
- The output of this Document index'
QueryBuilder.build()
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
Any
|
the query to execute |
required |
args |
positional arguments to pass to the query |
()
|
|
kwargs |
keyword arguments to pass to the query |
{}
|
Returns:
Type | Description |
---|---|
Any
|
the result of the query |
Source code in docarray/index/backends/weaviate.py
filter(filter_query, limit=10, **kwargs)
Find documents in the index based on a filter query
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_query |
Any
|
the DB specific filter query to execute |
required |
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
DocList
|
a DocList containing the documents that match the filter query |
Source code in docarray/index/abstract.py
filter_batched(filter_queries, limit=10, **kwargs)
Find documents in the index based on multiple filter queries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_queries |
Any
|
the DB specific filter query to execute |
required |
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
List[DocList]
|
a DocList containing the documents that match the filter query |
Source code in docarray/index/abstract.py
filter_subindex(filter_query, subindex, limit=10, **kwargs)
Find documents in subindex level based on a filter query
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_query |
Any
|
the DB specific filter query to execute |
required |
subindex |
str
|
name of the subindex to search on |
required |
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
DocList
|
a DocList containing the subindex level documents that match the filter query |
Source code in docarray/index/abstract.py
find(query, search_field='', limit=10, **kwargs)
Find k-nearest neighbors of the query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
Union[AnyTensor, BaseDoc]
|
query vector for KNN/ANN search. Has single axis. |
required |
search_field |
str
|
name of the field to search on |
''
|
limit |
int
|
maximum number of documents to return per query |
10
|
Returns:
Type | Description |
---|---|
a named tuple containing |
Source code in docarray/index/backends/weaviate.py
find_batched(queries, search_field='', limit=10, **kwargs)
Find documents in the index using nearest neighbor search.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries |
Union[AnyTensor, DocList]
|
query vector for KNN/ANN search. Can be either a tensor-like (np.array, torch.Tensor, etc.) with a, or a DocList. If a tensor-like is passed, it should have shape (batch_size, vector_dim) |
required |
search_field |
str
|
name of the field to search on. Documents in the index are retrieved based on this similarity of this field to the query. |
''
|
limit |
int
|
maximum number of documents to return per query |
10
|
Returns:
Type | Description |
---|---|
FindResultBatched
|
a named tuple containing |
Source code in docarray/index/backends/weaviate.py
find_subindex(query, subindex='', search_field='', limit=10, **kwargs)
Find documents in subindex level.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
Union[AnyTensor, BaseDoc]
|
query vector for KNN/ANN search. Can be either a tensor-like (np.array, torch.Tensor, etc.) with a single axis, or a Document |
required |
subindex |
str
|
name of the subindex to search on |
''
|
search_field |
str
|
name of the field to search on |
''
|
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
SubindexFindResult
|
a named tuple containing root docs, subindex docs and scores |
Source code in docarray/index/abstract.py
index(docs, **kwargs)
index Documents into the index.
Note
Passing a sequence of Documents that is not a DocList (such as a List of Docs) comes at a performance penalty. This is because the Index needs to check compatibility between itself and the data. With a DocList as input this is a single check; for other inputs compatibility needs to be checked for every Document individually.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs |
Union[BaseDoc, Sequence[BaseDoc]]
|
Documents to index. |
required |
Source code in docarray/index/abstract.py
num_docs()
Get the number of documents.
Source code in docarray/index/backends/weaviate.py
python_type_to_db_type(python_type)
Map python type to database type. Takes any python type and returns the corresponding database column type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
python_type |
Type
|
a python type. |
required |
Returns:
Type | Description |
---|---|
Any
|
the corresponding database column type, or None if |
Source code in docarray/index/backends/weaviate.py
subindex_contains(item)
Checks if a given BaseDoc item is contained in the index or any of its subindices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item |
BaseDoc
|
the given BaseDoc |
required |
Returns:
Type | Description |
---|---|
bool
|
if the given BaseDoc item is contained in the index/subindices |
Source code in docarray/index/abstract.py
text_search(query, search_field='', limit=10, **kwargs)
Find documents in the index based on a text search query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
Union[str, BaseDoc]
|
The text to search for |
required |
search_field |
str
|
name of the field to search on |
''
|
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
FindResult
|
a named tuple containing |
Source code in docarray/index/abstract.py
text_search_batched(queries, search_field='', limit=10, **kwargs)
Find documents in the index based on a text search query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries |
Union[Sequence[str], Sequence[BaseDoc]]
|
The texts to search for |
required |
search_field |
str
|
name of the field to search on |
''
|
limit |
int
|
maximum number of documents to return |
10
|
Returns:
Type | Description |
---|---|
FindResultBatched
|
a named tuple containing |