find
docarray.utils.find
find(index, query, search_field='', metric='cosine_sim', limit=10, device=None, descending=None, cache=None)
Find the closest Documents in the index to the query. Supports PyTorch and NumPy embeddings.
Note
This is a simple implementation of exact search. If you need to do advance
search using approximate nearest neighbours search or hybrid search or
multi vector search please take a look at the BaseDoc
.
from docarray import DocList, BaseDoc
from docarray.typing import TorchTensor
from docarray.utils.find import find
import torch
class MyDocument(BaseDoc):
embedding: TorchTensor
index = DocList[MyDocument]([MyDocument(embedding=torch.rand(128)) for _ in range(100)])
# use Document as query
query = MyDocument(embedding=torch.rand(128))
top_matches, scores = find(
index=index,
query=query,
search_field='embedding',
metric='cosine_sim',
)
# use tensor as query
query = torch.rand(128)
top_matches, scores = find(
index=index,
query=query,
search_field='embedding',
metric='cosine_sim',
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
AnyDocArray
|
the index of Documents to search in |
required |
query |
Union[AnyTensor, BaseDoc]
|
the query to search for |
required |
search_field |
str
|
the tensor-like field in the index to use for the similarity computation |
''
|
metric |
str
|
the distance metric to use for the similarity computation. Can be one of the following strings: 'cosine_sim' for cosine similarity, 'euclidean_dist' for euclidean distance, 'sqeuclidean_dist' for squared euclidean distance |
'cosine_sim'
|
limit |
int
|
return the top |
10
|
device |
Optional[str]
|
the computational device to use, can be either |
None
|
descending |
Optional[bool]
|
sort the results in descending order. Per default, this is chosen based on the |
None
|
cache |
Optional[Dict[str, Tuple[AnyTensor, Optional[List[int]]]]]
|
Precomputed data storing the valid index data per search field together with the valid indexes to account for deleted entries. |
None
|
Returns:
Type | Description |
---|---|
FindResult
|
A named tuple of the form (DocList, AnyTensor), where the first element contains the closes matches for the query, and the second element contains the corresponding scores. |
Source code in docarray/utils/find.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
find_batched(index, query, search_field='', metric='cosine_sim', limit=10, device=None, descending=None, cache=None)
Find the closest Documents in the index to the queries. Supports PyTorch and NumPy embeddings.
Note
This is a simple implementation of exact search. If you need to do advance
search using approximate nearest neighbours search or hybrid search or
multi vector search please take a look at the BaseDoc
Note
Only non-None embeddings will be considered from the index
array
from docarray import DocList, BaseDoc
from docarray.typing import TorchTensor
from docarray.utils.find import find_batched
import torch
class MyDocument(BaseDoc):
embedding: TorchTensor
index = DocList[MyDocument]([MyDocument(embedding=torch.rand(128)) for _ in range(100)])
# use DocList as query
query = DocList[MyDocument]([MyDocument(embedding=torch.rand(128)) for _ in range(3)])
docs, scores = find_batched(
index=index,
query=query,
search_field='embedding',
metric='cosine_sim',
)
top_matches, scores = docs[0], scores[0]
# use tensor as query
query = torch.rand(3, 128)
docs, scores = find_batched(
index=index,
query=query,
search_field='embedding',
metric='cosine_sim',
)
top_matches, scores = docs[0], scores[0]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
AnyDocArray
|
the index of Documents to search in |
required |
query |
Union[AnyTensor, DocList]
|
the query to search for |
required |
search_field |
str
|
the tensor-like field in the index to use for the similarity computation |
''
|
metric |
str
|
the distance metric to use for the similarity computation. Can be one of the following strings: 'cosine_sim' for cosine similarity, 'euclidean_dist' for euclidean distance, 'sqeuclidean_dist' for squared euclidean distance |
'cosine_sim'
|
limit |
int
|
return the top |
10
|
device |
Optional[str]
|
the computational device to use, can be either |
None
|
descending |
Optional[bool]
|
sort the results in descending order. Per default, this is chosen based on the |
None
|
cache |
Optional[Dict[str, Tuple[AnyTensor, Optional[List[int]]]]]
|
Precomputed data storing the valid index data per search field together with the valid indexes to account for deleted entries. |
None
|
Returns:
Type | Description |
---|---|
FindResultBatched
|
A named tuple of the form (DocList, AnyTensor), where the first element contains the closest matches for each query, and the second element contains the corresponding scores. |
Source code in docarray/utils/find.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|