Skip to content

WeaviateDocumentIndex

docarray.index.backends.weaviate.WeaviateDocumentIndex

Bases: BaseDocIndex, Generic[TSchema]

Source code in docarray/index/backends/weaviate.py
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
class WeaviateDocumentIndex(BaseDocIndex, Generic[TSchema]):
    def __init__(self, db_config=None, **kwargs) -> None:
        """Initialize WeaviateDocumentIndex"""

        self.embedding_column: Optional[str] = None
        self.properties: Optional[List[str]] = None
        # keep track of the column name that contains the bytes
        # type because we will store them as a base64 encoded string
        # in weaviate
        self.bytes_columns: List[str] = []
        # keep track of the array columns that are not embeddings because we will
        # convert them to python lists before uploading to weaviate
        self.nonembedding_array_columns: List[str] = []
        super().__init__(db_config=db_config, **kwargs)
        self._db_config: WeaviateDocumentIndex.DBConfig = cast(
            WeaviateDocumentIndex.DBConfig, self._db_config
        )
        self._runtime_config: WeaviateDocumentIndex.RuntimeConfig = cast(
            WeaviateDocumentIndex.RuntimeConfig, self._runtime_config
        )

        if self._db_config.embedded_options:
            self._client = weaviate.Client(
                embedded_options=self._db_config.embedded_options
            )
        else:
            self._client = weaviate.Client(
                self._db_config.host, auth_client_secret=self._build_auth_credentials()
            )

        self._configure_client()
        self._validate_columns()
        self._set_embedding_column()
        self._set_properties()
        self._create_schema()

    @property
    def index_name(self):
        default_index_name = self._schema.__name__ if self._schema is not None else None
        if default_index_name is None:
            raise ValueError(
                'A WeaviateDocumentIndex must be typed with a Document type.'
                'To do so, use the syntax: WeaviateDocumentIndex[DocumentType]'
            )

        return self._db_config.index_name or default_index_name

    def _set_properties(self) -> None:
        field_overwrites = {"id": DOCUMENTID}

        self.properties = [
            field_overwrites.get(k, k)
            for k, v in self._column_infos.items()
            if v.config.get('is_embedding', False) is False
            and not issubclass(v.docarray_type, AnyDocArray)
        ]

    def _validate_columns(self) -> None:
        # must have at most one column with property is_embedding=True
        # and that column must be of type WEAVIATE_PY_VEC_TYPES
        # TODO: update when https://github.com/weaviate/weaviate/issues/2424
        # is implemented and discuss best interface to signal which column(s)
        # should be used for embeddings
        num_embedding_columns = 0

        for column_name, column_info in self._column_infos.items():
            if column_info.config.get('is_embedding', False):
                num_embedding_columns += 1
                # if db_type is not 'number[]', then that means the type of the column in
                # the given schema is not one of WEAVIATE_PY_VEC_TYPES
                # note: the mapping between a column's type in the schema to a weaviate type
                # is handled by the python_type_to_db_type method
                if column_info.db_type != 'number[]':
                    raise ValueError(
                        f'Column {column_name} is marked as embedding but is not of type {WEAVIATE_PY_VEC_TYPES}'
                    )

        if num_embedding_columns > 1:
            raise ValueError(
                f'Only one column can be marked as embedding but found {num_embedding_columns} columns marked as embedding'
            )

    def _set_embedding_column(self) -> None:
        for column_name, column_info in self._column_infos.items():
            if column_info.config.get('is_embedding', False):
                self.embedding_column = column_name
                break

    def _configure_client(self) -> None:
        self._client.batch.configure(**self._runtime_config.batch_config)

    def _build_auth_credentials(self):
        dbconfig = self._db_config

        if dbconfig.auth_api_key:
            return weaviate.auth.AuthApiKey(api_key=dbconfig.auth_api_key)
        elif dbconfig.username and dbconfig.password:
            return weaviate.auth.AuthClientPassword(
                dbconfig.username, dbconfig.password, dbconfig.scopes
            )
        else:
            return None

    def configure(self, runtime_config=None, **kwargs) -> None:
        """
        Configure the WeaviateDocumentIndex.
        You can either pass a config object to `config` or pass individual config
        parameters as keyword arguments.
        If a configuration object is passed, it will replace the current configuration.
        If keyword arguments are passed, they will update the current configuration.

        :param runtime_config: the configuration to apply
        :param kwargs: individual configuration parameters
        """
        super().configure(runtime_config, **kwargs)
        self._configure_client()

    def _create_schema(self) -> None:
        schema: Dict[str, Any] = {}

        properties = []
        column_infos = self._column_infos

        for column_name, column_info in column_infos.items():
            # in weaviate, we do not create a property for the doc's embeddings
            if issubclass(column_info.docarray_type, AnyDocArray):
                continue
            if column_name == self.embedding_column:
                continue
            if column_info.db_type == 'blob':
                self.bytes_columns.append(column_name)
            if column_info.db_type == 'number[]':
                self.nonembedding_array_columns.append(column_name)
            prop = {
                "name": column_name
                if column_name != 'id'
                else DOCUMENTID,  # in weaviate, id and _id is a reserved keyword
                "dataType": [column_info.db_type],
            }
            properties.append(prop)

        # TODO: What is the best way to specify other config that is part of schema?
        # e.g. invertedIndexConfig, shardingConfig, moduleConfig, vectorIndexConfig
        #       and configure replication
        # we will update base on user feedback
        schema["properties"] = properties
        schema["class"] = self.index_name

        # TODO: Use exists() instead of contains() when available
        #       see https://github.com/weaviate/weaviate-python-client/issues/232
        if self._client.schema.contains(schema):
            logging.warning(
                f"Found index {self.index_name} with schema {schema}. Will reuse existing schema."
            )
        else:
            self._client.schema.create_class(schema)

    @dataclass
    class DBConfig(BaseDocIndex.DBConfig):
        """Dataclass that contains all "static" configurations of WeaviateDocumentIndex."""

        host: str = 'http://localhost:8080'
        index_name: Optional[str] = None
        username: Optional[str] = None
        password: Optional[str] = None
        scopes: List[str] = field(default_factory=lambda: ["offline_access"])
        auth_api_key: Optional[str] = None
        embedded_options: Optional[EmbeddedOptions] = None

    @dataclass
    class RuntimeConfig(BaseDocIndex.RuntimeConfig):
        """Dataclass that contains all "dynamic" configurations of WeaviateDocumentIndex."""

        default_column_config: Dict[Any, Dict[str, Any]] = field(
            default_factory=lambda: {
                np.ndarray: {},
                docarray.typing.ID: {},
                'string': {},
                'text': {},
                'int': {},
                'number': {},
                'boolean': {},
                'number[]': {},
                'blob': {},
            }
        )

        batch_config: Dict[str, Any] = field(
            default_factory=lambda: DEFAULT_BATCH_CONFIG
        )

    def _del_items(self, doc_ids: Sequence[str]):
        has_matches = True

        operands = [
            {"path": [DOCUMENTID], "operator": "Equal", "valueString": doc_id}
            for doc_id in doc_ids
        ]
        where_filter = {
            "operator": "Or",
            "operands": operands,
        }

        # do a loop because there is a limit to how many objects can be deleted at
        # in a single query
        # see: https://weaviate.io/developers/weaviate/api/rest/batch#maximum-number-of-deletes-per-query
        while has_matches:
            results = self._client.batch.delete_objects(
                class_name=self.index_name,
                where=where_filter,
            )

            has_matches = results["results"]["matches"]

    def _filter(self, filter_query: Any, limit: int) -> Union[DocList, List[Dict]]:
        self._overwrite_id(filter_query)

        results = (
            self._client.query.get(self.index_name, self.properties)
            .with_additional("vector")
            .with_where(filter_query)
            .with_limit(limit)
            .do()
        )

        docs = results["data"]["Get"][self.index_name]

        return [self._parse_weaviate_result(doc) for doc in docs]

    def _filter_batched(
        self, filter_queries: Any, limit: int
    ) -> Union[List[DocList], List[List[Dict]]]:
        for filter_query in filter_queries:
            self._overwrite_id(filter_query)

        qs = [
            self._client.query.get(self.index_name, self.properties)
            .with_additional("vector")
            .with_where(filter_query)
            .with_limit(limit)
            .with_alias(f'query_{i}')
            for i, filter_query in enumerate(filter_queries)
        ]

        batched_results = self._client.query.multi_get(qs).do()

        return [
            [self._parse_weaviate_result(doc) for doc in batched_result]
            for batched_result in batched_results["data"]["Get"].values()
        ]

    def find(
        self,
        query: Union[AnyTensor, BaseDoc],
        search_field: str = '',
        limit: int = 10,
        **kwargs,
    ):
        """
        Find k-nearest neighbors of the query.

        :param query: query vector for KNN/ANN search. Has single axis.
        :param search_field: name of the field to search on
        :param limit: maximum number of documents to return per query
        :return: a named tuple containing `documents` and `scores`
        """
        self._logger.debug('Executing `find`')
        if search_field != '':
            raise ValueError(
                'Argument search_field is not supported for WeaviateDocumentIndex.\nSet search_field to an empty string to proceed.'
            )
        embedding_field = self._get_embedding_field()
        if isinstance(query, BaseDoc):
            query_vec = self._get_values_by_column([query], embedding_field)[0]
        else:
            query_vec = query
        query_vec_np = self._to_numpy(query_vec)
        docs, scores = self._find(
            query_vec_np, search_field=search_field, limit=limit, **kwargs
        )

        if isinstance(docs, List):
            docs = self._dict_list_to_docarray(docs)

        return FindResult(documents=docs, scores=scores)

    def _overwrite_id(self, where_filter):
        """
        Overwrite the id field in the where filter to DOCUMENTID
        if the "id" field is present in the path
        """
        for key, value in where_filter.items():
            if key == "path" and value == ["id"]:
                where_filter[key] = [DOCUMENTID]
            elif isinstance(value, dict):
                self._overwrite_id(value)
            elif isinstance(value, list):
                for item in value:
                    if isinstance(item, dict):
                        self._overwrite_id(item)

    def _find(
        self,
        query: np.ndarray,
        limit: int,
        search_field: str = '',
        score_name: Literal["certainty", "distance"] = "certainty",
        score_threshold: Optional[float] = None,
    ) -> _FindResult:
        index_name = self.index_name
        if search_field:
            logging.warning(
                'The search_field argument is not supported for the WeaviateDocumentIndex and will be ignored.'
            )
        near_vector: Dict[str, Any] = {
            "vector": query,
        }
        if score_threshold:
            near_vector[score_name] = score_threshold

        results = (
            self._client.query.get(index_name, self.properties)
            .with_near_vector(
                near_vector,
            )
            .with_limit(limit)
            .with_additional([score_name, "vector"])
            .do()
        )

        docs, scores = self._format_response(
            results["data"]["Get"][index_name], score_name
        )
        return _FindResult(docs, parse_obj_as(NdArray, scores))

    def _format_response(
        self, results, score_name
    ) -> Tuple[List[Dict[Any, Any]], List[Any]]:
        """
        Format the response from Weaviate into a Tuple of DocList and scores
        """

        documents = []
        scores = []

        for result in results:
            score = result["_additional"][score_name]
            scores.append(score)

            document = self._parse_weaviate_result(result)
            documents.append(document)

        return documents, scores

    def find_batched(
        self,
        queries: Union[AnyTensor, DocList],
        search_field: str = '',
        limit: int = 10,
        **kwargs: Any,
    ) -> FindResultBatched:
        """Find documents in the index using nearest neighbor search.

        :param queries: query vector for KNN/ANN search.
            Can be either a tensor-like (np.array, torch.Tensor, etc.) with a,
            or a DocList.
            If a tensor-like is passed, it should have shape (batch_size, vector_dim)
        :param search_field: name of the field to search on.
            Documents in the index are retrieved based on this similarity
            of this field to the query.
        :param limit: maximum number of documents to return per query
        :return: a named tuple containing `documents` and `scores`
        """
        self._logger.debug('Executing `find_batched`')
        if search_field != '':
            raise ValueError(
                'Argument search_field is not supported for WeaviateDocumentIndex.\nSet search_field to an empty string to proceed.'
            )
        embedding_field = self._get_embedding_field()

        if isinstance(queries, Sequence):
            query_vec_list = self._get_values_by_column(queries, embedding_field)
            query_vec_np = np.stack(
                tuple(self._to_numpy(query_vec) for query_vec in query_vec_list)
            )
        else:
            query_vec_np = self._to_numpy(queries)

        da_list, scores = self._find_batched(
            query_vec_np, search_field=search_field, limit=limit, **kwargs
        )

        if len(da_list) > 0 and isinstance(da_list[0], List):
            da_list = [self._dict_list_to_docarray(docs) for docs in da_list]

        return FindResultBatched(documents=da_list, scores=scores)  # type: ignore

    def _find_batched(
        self,
        queries: np.ndarray,
        limit: int,
        search_field: str = '',
        score_name: Literal["certainty", "distance"] = "certainty",
        score_threshold: Optional[float] = None,
    ) -> _FindResultBatched:
        qs = []
        for i, query in enumerate(queries):
            near_vector: Dict[str, Any] = {"vector": query}

            if score_threshold:
                near_vector[score_name] = score_threshold

            q = (
                self._client.query.get(self.index_name, self.properties)
                .with_near_vector(near_vector)
                .with_limit(limit)
                .with_additional([score_name, "vector"])
                .with_alias(f'query_{i}')
            )

            qs.append(q)

        results = self._client.query.multi_get(qs).do()

        docs_and_scores = [
            self._format_response(result, score_name)
            for result in results["data"]["Get"].values()
        ]

        docs, scores = zip(*docs_and_scores)
        return _FindResultBatched(list(docs), list(scores))

    def _get_items(self, doc_ids: Sequence[str]) -> List[Dict]:
        # TODO: warn when doc_ids > QUERY_MAXIMUM_RESULTS after
        #       https://github.com/weaviate/weaviate/issues/2792
        #       is implemented
        operands = [
            {"path": [DOCUMENTID], "operator": "Equal", "valueString": doc_id}
            for doc_id in doc_ids
        ]
        where_filter = {
            "operator": "Or",
            "operands": operands,
        }

        results = (
            self._client.query.get(self.index_name, self.properties)
            .with_where(where_filter)
            .with_additional("vector")
            .do()
        )

        docs = [
            self._parse_weaviate_result(doc)
            for doc in results["data"]["Get"][self.index_name]
        ]

        return docs

    def _rewrite_documentid(self, document: Dict):
        doc = document.copy()

        # rewrite the id to DOCUMENTID
        document_id = doc.pop('id')
        doc[DOCUMENTID] = document_id

        return doc

    def _parse_weaviate_result(self, result: Dict) -> Dict:
        """
        Parse the result from weaviate to a format that is compatible with the schema
        that was used to initialize weaviate with.
        """

        result = result.copy()

        # rewrite the DOCUMENTID to id
        if DOCUMENTID in result:
            result['id'] = result.pop(DOCUMENTID)

        # take the vector from the _additional field
        if '_additional' in result and self.embedding_column:
            additional_fields = result.pop('_additional')
            if 'vector' in additional_fields:
                result[self.embedding_column] = additional_fields['vector']

        # convert any base64 encoded bytes column to bytes
        self._decode_base64_properties_to_bytes(result)

        return result

    def _index(self, column_to_data: Dict[str, Generator[Any, None, None]]):
        self._index_subindex(column_to_data)

        docs = self._transpose_col_value_dict(column_to_data)
        index_name = self.index_name

        with self._client.batch as batch:
            for doc in docs:
                parsed_doc = self._rewrite_documentid(doc)
                self._encode_bytes_columns_to_base64(parsed_doc)
                self._convert_nonembedding_array_to_list(parsed_doc)
                vector = (
                    parsed_doc.pop(self.embedding_column)
                    if self.embedding_column
                    else None
                )

                batch.add_data_object(
                    uuid=weaviate.util.generate_uuid5(parsed_doc, index_name),
                    data_object=parsed_doc,
                    class_name=index_name,
                    vector=vector,
                )

    def _text_search(
        self, query: str, limit: int, search_field: str = ''
    ) -> _FindResult:
        index_name = self.index_name
        bm25 = {"query": query, "properties": [search_field]}

        results = (
            self._client.query.get(index_name, self.properties)
            .with_bm25(bm25)
            .with_limit(limit)
            .with_additional(["score", "vector"])
            .do()
        )

        docs, scores = self._format_response(
            results["data"]["Get"][index_name], "score"
        )

        return _FindResult(documents=docs, scores=parse_obj_as(NdArray, scores))

    def _text_search_batched(
        self, queries: Sequence[str], limit: int, search_field: str = ''
    ) -> _FindResultBatched:
        qs = []
        for i, query in enumerate(queries):
            bm25 = {"query": query, "properties": [search_field]}

            q = (
                self._client.query.get(self.index_name, self.properties)
                .with_bm25(bm25)
                .with_limit(limit)
                .with_additional(["score", "vector"])
                .with_alias(f'query_{i}')
            )

            qs.append(q)

        results = self._client.query.multi_get(qs).do()

        docs_and_scores = [
            self._format_response(result, "score")
            for result in results["data"]["Get"].values()
        ]

        docs, scores = zip(*docs_and_scores)
        return _FindResultBatched(list(docs), list(scores))

    def execute_query(self, query: Any, *args, **kwargs) -> Any:
        """
        Execute a query on the WeaviateDocumentIndex.

        Can take two kinds of inputs:

        1. A native query of the underlying database. This is meant as a passthrough so that you
        can enjoy any functionality that is not available through the Document index API.
        2. The output of this Document index' `QueryBuilder.build()` method.

        :param query: the query to execute
        :param args: positional arguments to pass to the query
        :param kwargs: keyword arguments to pass to the query
        :return: the result of the query
        """
        da_class = DocList.__class_getitem__(cast(Type[BaseDoc], self._schema))

        if isinstance(query, self.QueryBuilder):
            batched_results = self._client.query.multi_get(query._queries).do()
            batched_docs = batched_results["data"]["Get"].values()

            def f(doc):
                # TODO: use
                # return self._schema(**self._parse_weaviate_result(doc))
                # when https://github.com/weaviate/weaviate/issues/2858
                # is fixed
                return self._schema.from_view(self._parse_weaviate_result(doc))  # type: ignore

            results = [
                da_class([f(doc) for doc in batched_doc])
                for batched_doc in batched_docs
            ]
            return results if len(results) > 1 else results[0]

        # TODO: validate graphql query string before sending it to weaviate
        if isinstance(query, str):
            return self._client.query.raw(query)

    def num_docs(self) -> int:
        """
        Get the number of documents.
        """
        index_name = self.index_name
        result = self._client.query.aggregate(index_name).with_meta_count().do()
        # TODO: decorator to check for errors
        total_docs = result["data"]["Aggregate"][index_name][0]["meta"]["count"]

        return total_docs

    def python_type_to_db_type(self, python_type: Type) -> Any:
        """Map python type to database type.
        Takes any python type and returns the corresponding database column type.

        :param python_type: a python type.
        :return: the corresponding database column type,
            or None if ``python_type`` is not supported.
        """
        for allowed_type in WEAVIATE_PY_VEC_TYPES:
            if issubclass(python_type, allowed_type):
                return 'number[]'

        py_weaviate_type_map = {
            docarray.typing.ID: 'string',
            str: 'text',
            int: 'int',
            float: 'number',
            bool: 'boolean',
            np.ndarray: 'number[]',
            bytes: 'blob',
        }

        for py_type, weaviate_type in py_weaviate_type_map.items():
            if issubclass(python_type, py_type):
                return weaviate_type

        raise ValueError(f'Unsupported column type for {type(self)}: {python_type}')

    def build_query(self) -> BaseDocIndex.QueryBuilder:
        """
        Build a query for WeaviateDocumentIndex.
        :return: QueryBuilder object
        """
        return self.QueryBuilder(self)

    def _get_embedding_field(self):
        for colname, colinfo in self._column_infos.items():
            # no need to check for missing is_embedding attribute because this check
            # is done when the index is created
            if colinfo.config.get('is_embedding', None):
                return colname

        # just to pass mypy
        return ""

    def _encode_bytes_columns_to_base64(self, doc):
        for column in self.bytes_columns:
            if doc[column] is not None:
                doc[column] = base64.b64encode(doc[column]).decode("utf-8")

    def _decode_base64_properties_to_bytes(self, doc):
        for column in self.bytes_columns:
            if doc[column] is not None:
                doc[column] = base64.b64decode(doc[column])

    def _convert_nonembedding_array_to_list(self, doc):
        for column in self.nonembedding_array_columns:
            if doc[column] is not None:
                doc[column] = doc[column].tolist()

    def _filter_by_parent_id(self, id: str) -> Optional[List[str]]:
        results = (
            self._client.query.get(self._db_config.index_name, ['docarrayid'])
            .with_where(
                {'path': ['parent_id'], 'operator': 'Equal', 'valueString': f'{id}'}
            )
            .do()
        )

        ids = [
            res['docarrayid']
            for res in results['data']['Get'][self._db_config.index_name]
        ]
        return ids

    class QueryBuilder(BaseDocIndex.QueryBuilder):
        def __init__(self, document_index):
            self._queries = [
                document_index._client.query.get(
                    document_index.index_name, document_index.properties
                )
            ]

        def build(self, *args, **kwargs) -> Any:
            """Build the query object."""
            num_queries = len(self._queries)

            for i in range(num_queries):
                q = self._queries[i]
                if self._is_hybrid_query(q):
                    self._make_proper_hybrid_query(q)
                q.with_additional(["vector"]).with_alias(f'query_{i}')

            return self

        def _is_hybrid_query(self, query: weaviate.gql.get.GetBuilder) -> bool:
            """
            Checks if a query has been composed with both a with_bm25 and a with_near_vector verb
            """
            if not query._near_ask:
                return False
            else:
                return query._bm25 and query._near_ask._content.get("vector", None)

        def _make_proper_hybrid_query(
            self, query: weaviate.gql.get.GetBuilder
        ) -> weaviate.gql.get.GetBuilder:
            """
            Modifies a query to be a proper hybrid query.

            In weaviate, a query with with_bm25 and with_near_vector verb is not a hybrid query.
            We need to use the with_hybrid verb to make it a hybrid query.
            """

            text_query = query._bm25.query
            vector_query = query._near_ask._content["vector"]
            hybrid_query = weaviate.gql.get.Hybrid(
                query=text_query, vector=vector_query, alpha=0.5
            )

            query._bm25 = None
            query._near_ask = None
            query._hybrid = hybrid_query

        def _overwrite_id(self, where_filter):
            """
            Overwrite the id field in the where filter to DOCUMENTID
            if the "id" field is present in the path
            """
            for key, value in where_filter.items():
                if key == "path" and value == ["id"]:
                    where_filter[key] = [DOCUMENTID]
                elif isinstance(value, dict):
                    self._overwrite_id(value)
                elif isinstance(value, list):
                    for item in value:
                        if isinstance(item, dict):
                            self._overwrite_id(item)

        def find(
            self,
            query,
            score_name: Literal["certainty", "distance"] = "certainty",
            score_threshold: Optional[float] = None,
            **kwargs,
        ) -> Any:
            """
            Find k-nearest neighbors of the query.

            :param query: query vector for search. Has single axis.
            :param score_name: either `"certainty"` (default) or `"distance"`
            :param score_threshold: the threshold of the score
            :return: self
            """
            if kwargs.get('search_field'):
                logging.warning(
                    'The search_field argument is not supported for the WeaviateDocumentIndex and will be ignored.'
                )

            near_vector = {
                "vector": query,
            }
            if score_threshold:
                near_vector[score_name] = score_threshold

            self._queries[0] = self._queries[0].with_near_vector(near_vector)
            return self

        def find_batched(
            self,
            queries,
            score_name: Literal["certainty", "distance"] = "certainty",
            score_threshold: Optional[float] = None,
        ) -> Any:
            """Find k-nearest neighbors of the query vectors.

            :param queries: query vector for KNN/ANN search.
                Can be either a tensor-like (np.array, torch.Tensor, etc.) with a,
                or a DocList.
                If a tensor-like is passed, it should have shape `(batch_size, vector_dim)`
            :param score_name: either `"certainty"` (default) or `"distance"`
            :param score_threshold: the threshold of the score
            :return: self
            """
            adj_queries, adj_clauses = self._resize_queries_and_clauses(
                self._queries, queries
            )
            new_queries = []

            for query, clause in zip(adj_queries, adj_clauses):
                near_vector = {
                    "vector": clause,
                }
                if score_threshold:
                    near_vector[score_name] = score_threshold

                new_queries.append(query.with_near_vector(near_vector))

            self._queries = new_queries

            return self

        def filter(self, where_filter: Any) -> Any:
            """Find documents in the index based on a filter query
            :param where_filter: a filter
            :return: self
            """
            where_filter = where_filter.copy()
            self._overwrite_id(where_filter)
            self._queries[0] = self._queries[0].with_where(where_filter)
            return self

        def filter_batched(self, filters) -> Any:
            """Find documents in the index based on a filter query
            :param filters: filters
            :return: self
            """
            adj_queries, adj_clauses = self._resize_queries_and_clauses(
                self._queries, filters
            )
            new_queries = []

            for query, clause in zip(adj_queries, adj_clauses):
                clause = clause.copy()
                self._overwrite_id(clause)
                new_queries.append(query.with_where(clause))

            self._queries = new_queries

            return self

        def text_search(self, query: str, search_field: Optional[str] = None) -> Any:
            """Find documents in the index based on a text search query

            :param query: The text to search for
            :param search_field: name of the field to search on
            :return: self
            """
            bm25: Dict[str, Any] = {"query": query}
            if search_field:
                bm25["properties"] = [search_field]
            self._queries[0] = self._queries[0].with_bm25(**bm25)
            return self

        def text_search_batched(
            self, queries: Sequence[str], search_field: Optional[str] = None
        ) -> Any:
            """Find documents in the index based on a text search query

            :param queries: The texts to search for
            :param search_field: name of the field to search on
            :return: self
            """
            adj_queries, adj_clauses = self._resize_queries_and_clauses(
                self._queries, queries
            )
            new_queries = []

            for query, clause in zip(adj_queries, adj_clauses):
                bm25 = {"query": clause}
                if search_field:
                    bm25["properties"] = [search_field]
                new_queries.append(query.with_bm25(**bm25))

            self._queries = new_queries

            return self

        def limit(self, limit: int) -> Any:
            self._queries = [query.with_limit(limit) for query in self._queries]
            return self

        def _resize_queries_and_clauses(self, queries, clauses):
            """
            Adjust the length and content of queries and clauses so that we can compose
            them element-wise
            """
            num_clauses = len(clauses)
            num_queries = len(queries)

            # if there's only one clause, then we assume that it should be applied
            # to every query
            if num_clauses == 1:
                return queries, clauses * num_queries
            # if there's only one query, then we can lengthen it to match the number
            # of clauses
            elif num_queries == 1:
                return [copy.deepcopy(queries[0]) for _ in range(num_clauses)], clauses
            # if the number of queries and clauses is the same, then we can just
            # return them as-is
            elif num_clauses == num_queries:
                return queries, clauses
            else:
                raise ValueError(
                    f"Can't compose {num_clauses} clauses with {num_queries} queries"
                )

DBConfig dataclass

Bases: BaseDocIndex.DBConfig

Dataclass that contains all "static" configurations of WeaviateDocumentIndex.

Source code in docarray/index/backends/weaviate.py
@dataclass
class DBConfig(BaseDocIndex.DBConfig):
    """Dataclass that contains all "static" configurations of WeaviateDocumentIndex."""

    host: str = 'http://localhost:8080'
    index_name: Optional[str] = None
    username: Optional[str] = None
    password: Optional[str] = None
    scopes: List[str] = field(default_factory=lambda: ["offline_access"])
    auth_api_key: Optional[str] = None
    embedded_options: Optional[EmbeddedOptions] = None

QueryBuilder

Bases: BaseDocIndex.QueryBuilder

Source code in docarray/index/backends/weaviate.py
class QueryBuilder(BaseDocIndex.QueryBuilder):
    def __init__(self, document_index):
        self._queries = [
            document_index._client.query.get(
                document_index.index_name, document_index.properties
            )
        ]

    def build(self, *args, **kwargs) -> Any:
        """Build the query object."""
        num_queries = len(self._queries)

        for i in range(num_queries):
            q = self._queries[i]
            if self._is_hybrid_query(q):
                self._make_proper_hybrid_query(q)
            q.with_additional(["vector"]).with_alias(f'query_{i}')

        return self

    def _is_hybrid_query(self, query: weaviate.gql.get.GetBuilder) -> bool:
        """
        Checks if a query has been composed with both a with_bm25 and a with_near_vector verb
        """
        if not query._near_ask:
            return False
        else:
            return query._bm25 and query._near_ask._content.get("vector", None)

    def _make_proper_hybrid_query(
        self, query: weaviate.gql.get.GetBuilder
    ) -> weaviate.gql.get.GetBuilder:
        """
        Modifies a query to be a proper hybrid query.

        In weaviate, a query with with_bm25 and with_near_vector verb is not a hybrid query.
        We need to use the with_hybrid verb to make it a hybrid query.
        """

        text_query = query._bm25.query
        vector_query = query._near_ask._content["vector"]
        hybrid_query = weaviate.gql.get.Hybrid(
            query=text_query, vector=vector_query, alpha=0.5
        )

        query._bm25 = None
        query._near_ask = None
        query._hybrid = hybrid_query

    def _overwrite_id(self, where_filter):
        """
        Overwrite the id field in the where filter to DOCUMENTID
        if the "id" field is present in the path
        """
        for key, value in where_filter.items():
            if key == "path" and value == ["id"]:
                where_filter[key] = [DOCUMENTID]
            elif isinstance(value, dict):
                self._overwrite_id(value)
            elif isinstance(value, list):
                for item in value:
                    if isinstance(item, dict):
                        self._overwrite_id(item)

    def find(
        self,
        query,
        score_name: Literal["certainty", "distance"] = "certainty",
        score_threshold: Optional[float] = None,
        **kwargs,
    ) -> Any:
        """
        Find k-nearest neighbors of the query.

        :param query: query vector for search. Has single axis.
        :param score_name: either `"certainty"` (default) or `"distance"`
        :param score_threshold: the threshold of the score
        :return: self
        """
        if kwargs.get('search_field'):
            logging.warning(
                'The search_field argument is not supported for the WeaviateDocumentIndex and will be ignored.'
            )

        near_vector = {
            "vector": query,
        }
        if score_threshold:
            near_vector[score_name] = score_threshold

        self._queries[0] = self._queries[0].with_near_vector(near_vector)
        return self

    def find_batched(
        self,
        queries,
        score_name: Literal["certainty", "distance"] = "certainty",
        score_threshold: Optional[float] = None,
    ) -> Any:
        """Find k-nearest neighbors of the query vectors.

        :param queries: query vector for KNN/ANN search.
            Can be either a tensor-like (np.array, torch.Tensor, etc.) with a,
            or a DocList.
            If a tensor-like is passed, it should have shape `(batch_size, vector_dim)`
        :param score_name: either `"certainty"` (default) or `"distance"`
        :param score_threshold: the threshold of the score
        :return: self
        """
        adj_queries, adj_clauses = self._resize_queries_and_clauses(
            self._queries, queries
        )
        new_queries = []

        for query, clause in zip(adj_queries, adj_clauses):
            near_vector = {
                "vector": clause,
            }
            if score_threshold:
                near_vector[score_name] = score_threshold

            new_queries.append(query.with_near_vector(near_vector))

        self._queries = new_queries

        return self

    def filter(self, where_filter: Any) -> Any:
        """Find documents in the index based on a filter query
        :param where_filter: a filter
        :return: self
        """
        where_filter = where_filter.copy()
        self._overwrite_id(where_filter)
        self._queries[0] = self._queries[0].with_where(where_filter)
        return self

    def filter_batched(self, filters) -> Any:
        """Find documents in the index based on a filter query
        :param filters: filters
        :return: self
        """
        adj_queries, adj_clauses = self._resize_queries_and_clauses(
            self._queries, filters
        )
        new_queries = []

        for query, clause in zip(adj_queries, adj_clauses):
            clause = clause.copy()
            self._overwrite_id(clause)
            new_queries.append(query.with_where(clause))

        self._queries = new_queries

        return self

    def text_search(self, query: str, search_field: Optional[str] = None) -> Any:
        """Find documents in the index based on a text search query

        :param query: The text to search for
        :param search_field: name of the field to search on
        :return: self
        """
        bm25: Dict[str, Any] = {"query": query}
        if search_field:
            bm25["properties"] = [search_field]
        self._queries[0] = self._queries[0].with_bm25(**bm25)
        return self

    def text_search_batched(
        self, queries: Sequence[str], search_field: Optional[str] = None
    ) -> Any:
        """Find documents in the index based on a text search query

        :param queries: The texts to search for
        :param search_field: name of the field to search on
        :return: self
        """
        adj_queries, adj_clauses = self._resize_queries_and_clauses(
            self._queries, queries
        )
        new_queries = []

        for query, clause in zip(adj_queries, adj_clauses):
            bm25 = {"query": clause}
            if search_field:
                bm25["properties"] = [search_field]
            new_queries.append(query.with_bm25(**bm25))

        self._queries = new_queries

        return self

    def limit(self, limit: int) -> Any:
        self._queries = [query.with_limit(limit) for query in self._queries]
        return self

    def _resize_queries_and_clauses(self, queries, clauses):
        """
        Adjust the length and content of queries and clauses so that we can compose
        them element-wise
        """
        num_clauses = len(clauses)
        num_queries = len(queries)

        # if there's only one clause, then we assume that it should be applied
        # to every query
        if num_clauses == 1:
            return queries, clauses * num_queries
        # if there's only one query, then we can lengthen it to match the number
        # of clauses
        elif num_queries == 1:
            return [copy.deepcopy(queries[0]) for _ in range(num_clauses)], clauses
        # if the number of queries and clauses is the same, then we can just
        # return them as-is
        elif num_clauses == num_queries:
            return queries, clauses
        else:
            raise ValueError(
                f"Can't compose {num_clauses} clauses with {num_queries} queries"
            )

build(*args, **kwargs)

Build the query object.

Source code in docarray/index/backends/weaviate.py
def build(self, *args, **kwargs) -> Any:
    """Build the query object."""
    num_queries = len(self._queries)

    for i in range(num_queries):
        q = self._queries[i]
        if self._is_hybrid_query(q):
            self._make_proper_hybrid_query(q)
        q.with_additional(["vector"]).with_alias(f'query_{i}')

    return self

filter(where_filter)

Find documents in the index based on a filter query

Parameters:

Name Type Description Default
where_filter Any

a filter

required

Returns:

Type Description
Any

self

Source code in docarray/index/backends/weaviate.py
def filter(self, where_filter: Any) -> Any:
    """Find documents in the index based on a filter query
    :param where_filter: a filter
    :return: self
    """
    where_filter = where_filter.copy()
    self._overwrite_id(where_filter)
    self._queries[0] = self._queries[0].with_where(where_filter)
    return self

filter_batched(filters)

Find documents in the index based on a filter query

Parameters:

Name Type Description Default
filters

filters

required

Returns:

Type Description
Any

self

Source code in docarray/index/backends/weaviate.py
def filter_batched(self, filters) -> Any:
    """Find documents in the index based on a filter query
    :param filters: filters
    :return: self
    """
    adj_queries, adj_clauses = self._resize_queries_and_clauses(
        self._queries, filters
    )
    new_queries = []

    for query, clause in zip(adj_queries, adj_clauses):
        clause = clause.copy()
        self._overwrite_id(clause)
        new_queries.append(query.with_where(clause))

    self._queries = new_queries

    return self

find(query, score_name='certainty', score_threshold=None, **kwargs)

Find k-nearest neighbors of the query.

Parameters:

Name Type Description Default
query

query vector for search. Has single axis.

required
score_name Literal[certainty, distance]

either "certainty" (default) or "distance"

'certainty'
score_threshold Optional[float]

the threshold of the score

None

Returns:

Type Description
Any

self

Source code in docarray/index/backends/weaviate.py
def find(
    self,
    query,
    score_name: Literal["certainty", "distance"] = "certainty",
    score_threshold: Optional[float] = None,
    **kwargs,
) -> Any:
    """
    Find k-nearest neighbors of the query.

    :param query: query vector for search. Has single axis.
    :param score_name: either `"certainty"` (default) or `"distance"`
    :param score_threshold: the threshold of the score
    :return: self
    """
    if kwargs.get('search_field'):
        logging.warning(
            'The search_field argument is not supported for the WeaviateDocumentIndex and will be ignored.'
        )

    near_vector = {
        "vector": query,
    }
    if score_threshold:
        near_vector[score_name] = score_threshold

    self._queries[0] = self._queries[0].with_near_vector(near_vector)
    return self

find_batched(queries, score_name='certainty', score_threshold=None)

Find k-nearest neighbors of the query vectors.

Parameters:

Name Type Description Default
queries

query vector for KNN/ANN search. Can be either a tensor-like (np.array, torch.Tensor, etc.) with a, or a DocList. If a tensor-like is passed, it should have shape (batch_size, vector_dim)

required
score_name Literal[certainty, distance]

either "certainty" (default) or "distance"

'certainty'
score_threshold Optional[float]

the threshold of the score

None

Returns:

Type Description
Any

self

Source code in docarray/index/backends/weaviate.py
def find_batched(
    self,
    queries,
    score_name: Literal["certainty", "distance"] = "certainty",
    score_threshold: Optional[float] = None,
) -> Any:
    """Find k-nearest neighbors of the query vectors.

    :param queries: query vector for KNN/ANN search.
        Can be either a tensor-like (np.array, torch.Tensor, etc.) with a,
        or a DocList.
        If a tensor-like is passed, it should have shape `(batch_size, vector_dim)`
    :param score_name: either `"certainty"` (default) or `"distance"`
    :param score_threshold: the threshold of the score
    :return: self
    """
    adj_queries, adj_clauses = self._resize_queries_and_clauses(
        self._queries, queries
    )
    new_queries = []

    for query, clause in zip(adj_queries, adj_clauses):
        near_vector = {
            "vector": clause,
        }
        if score_threshold:
            near_vector[score_name] = score_threshold

        new_queries.append(query.with_near_vector(near_vector))

    self._queries = new_queries

    return self

Find documents in the index based on a text search query

Parameters:

Name Type Description Default
query str

The text to search for

required
search_field Optional[str]

name of the field to search on

None

Returns:

Type Description
Any

self

Source code in docarray/index/backends/weaviate.py
def text_search(self, query: str, search_field: Optional[str] = None) -> Any:
    """Find documents in the index based on a text search query

    :param query: The text to search for
    :param search_field: name of the field to search on
    :return: self
    """
    bm25: Dict[str, Any] = {"query": query}
    if search_field:
        bm25["properties"] = [search_field]
    self._queries[0] = self._queries[0].with_bm25(**bm25)
    return self

text_search_batched(queries, search_field=None)

Find documents in the index based on a text search query

Parameters:

Name Type Description Default
queries Sequence[str]

The texts to search for

required
search_field Optional[str]

name of the field to search on

None

Returns:

Type Description
Any

self

Source code in docarray/index/backends/weaviate.py
def text_search_batched(
    self, queries: Sequence[str], search_field: Optional[str] = None
) -> Any:
    """Find documents in the index based on a text search query

    :param queries: The texts to search for
    :param search_field: name of the field to search on
    :return: self
    """
    adj_queries, adj_clauses = self._resize_queries_and_clauses(
        self._queries, queries
    )
    new_queries = []

    for query, clause in zip(adj_queries, adj_clauses):
        bm25 = {"query": clause}
        if search_field:
            bm25["properties"] = [search_field]
        new_queries.append(query.with_bm25(**bm25))

    self._queries = new_queries

    return self

RuntimeConfig dataclass

Bases: BaseDocIndex.RuntimeConfig

Dataclass that contains all "dynamic" configurations of WeaviateDocumentIndex.

Source code in docarray/index/backends/weaviate.py
@dataclass
class RuntimeConfig(BaseDocIndex.RuntimeConfig):
    """Dataclass that contains all "dynamic" configurations of WeaviateDocumentIndex."""

    default_column_config: Dict[Any, Dict[str, Any]] = field(
        default_factory=lambda: {
            np.ndarray: {},
            docarray.typing.ID: {},
            'string': {},
            'text': {},
            'int': {},
            'number': {},
            'boolean': {},
            'number[]': {},
            'blob': {},
        }
    )

    batch_config: Dict[str, Any] = field(
        default_factory=lambda: DEFAULT_BATCH_CONFIG
    )

__init__(db_config=None, **kwargs)

Initialize WeaviateDocumentIndex

Source code in docarray/index/backends/weaviate.py
def __init__(self, db_config=None, **kwargs) -> None:
    """Initialize WeaviateDocumentIndex"""

    self.embedding_column: Optional[str] = None
    self.properties: Optional[List[str]] = None
    # keep track of the column name that contains the bytes
    # type because we will store them as a base64 encoded string
    # in weaviate
    self.bytes_columns: List[str] = []
    # keep track of the array columns that are not embeddings because we will
    # convert them to python lists before uploading to weaviate
    self.nonembedding_array_columns: List[str] = []
    super().__init__(db_config=db_config, **kwargs)
    self._db_config: WeaviateDocumentIndex.DBConfig = cast(
        WeaviateDocumentIndex.DBConfig, self._db_config
    )
    self._runtime_config: WeaviateDocumentIndex.RuntimeConfig = cast(
        WeaviateDocumentIndex.RuntimeConfig, self._runtime_config
    )

    if self._db_config.embedded_options:
        self._client = weaviate.Client(
            embedded_options=self._db_config.embedded_options
        )
    else:
        self._client = weaviate.Client(
            self._db_config.host, auth_client_secret=self._build_auth_credentials()
        )

    self._configure_client()
    self._validate_columns()
    self._set_embedding_column()
    self._set_properties()
    self._create_schema()

build_query()

Build a query for WeaviateDocumentIndex.

Returns:

Type Description
BaseDocIndex.QueryBuilder

QueryBuilder object

Source code in docarray/index/backends/weaviate.py
def build_query(self) -> BaseDocIndex.QueryBuilder:
    """
    Build a query for WeaviateDocumentIndex.
    :return: QueryBuilder object
    """
    return self.QueryBuilder(self)

configure(runtime_config=None, **kwargs)

Configure the WeaviateDocumentIndex. You can either pass a config object to config or pass individual config parameters as keyword arguments. If a configuration object is passed, it will replace the current configuration. If keyword arguments are passed, they will update the current configuration.

Parameters:

Name Type Description Default
runtime_config

the configuration to apply

None
kwargs

individual configuration parameters

{}
Source code in docarray/index/backends/weaviate.py
def configure(self, runtime_config=None, **kwargs) -> None:
    """
    Configure the WeaviateDocumentIndex.
    You can either pass a config object to `config` or pass individual config
    parameters as keyword arguments.
    If a configuration object is passed, it will replace the current configuration.
    If keyword arguments are passed, they will update the current configuration.

    :param runtime_config: the configuration to apply
    :param kwargs: individual configuration parameters
    """
    super().configure(runtime_config, **kwargs)
    self._configure_client()

execute_query(query, *args, **kwargs)

Execute a query on the WeaviateDocumentIndex.

Can take two kinds of inputs:

  1. A native query of the underlying database. This is meant as a passthrough so that you can enjoy any functionality that is not available through the Document index API.
  2. The output of this Document index' QueryBuilder.build() method.

Parameters:

Name Type Description Default
query Any

the query to execute

required
args

positional arguments to pass to the query

()
kwargs

keyword arguments to pass to the query

{}

Returns:

Type Description
Any

the result of the query

Source code in docarray/index/backends/weaviate.py
def execute_query(self, query: Any, *args, **kwargs) -> Any:
    """
    Execute a query on the WeaviateDocumentIndex.

    Can take two kinds of inputs:

    1. A native query of the underlying database. This is meant as a passthrough so that you
    can enjoy any functionality that is not available through the Document index API.
    2. The output of this Document index' `QueryBuilder.build()` method.

    :param query: the query to execute
    :param args: positional arguments to pass to the query
    :param kwargs: keyword arguments to pass to the query
    :return: the result of the query
    """
    da_class = DocList.__class_getitem__(cast(Type[BaseDoc], self._schema))

    if isinstance(query, self.QueryBuilder):
        batched_results = self._client.query.multi_get(query._queries).do()
        batched_docs = batched_results["data"]["Get"].values()

        def f(doc):
            # TODO: use
            # return self._schema(**self._parse_weaviate_result(doc))
            # when https://github.com/weaviate/weaviate/issues/2858
            # is fixed
            return self._schema.from_view(self._parse_weaviate_result(doc))  # type: ignore

        results = [
            da_class([f(doc) for doc in batched_doc])
            for batched_doc in batched_docs
        ]
        return results if len(results) > 1 else results[0]

    # TODO: validate graphql query string before sending it to weaviate
    if isinstance(query, str):
        return self._client.query.raw(query)

find(query, search_field='', limit=10, **kwargs)

Find k-nearest neighbors of the query.

Parameters:

Name Type Description Default
query Union[AnyTensor, BaseDoc]

query vector for KNN/ANN search. Has single axis.

required
search_field str

name of the field to search on

''
limit int

maximum number of documents to return per query

10

Returns:

Type Description

a named tuple containing documents and scores

Source code in docarray/index/backends/weaviate.py
def find(
    self,
    query: Union[AnyTensor, BaseDoc],
    search_field: str = '',
    limit: int = 10,
    **kwargs,
):
    """
    Find k-nearest neighbors of the query.

    :param query: query vector for KNN/ANN search. Has single axis.
    :param search_field: name of the field to search on
    :param limit: maximum number of documents to return per query
    :return: a named tuple containing `documents` and `scores`
    """
    self._logger.debug('Executing `find`')
    if search_field != '':
        raise ValueError(
            'Argument search_field is not supported for WeaviateDocumentIndex.\nSet search_field to an empty string to proceed.'
        )
    embedding_field = self._get_embedding_field()
    if isinstance(query, BaseDoc):
        query_vec = self._get_values_by_column([query], embedding_field)[0]
    else:
        query_vec = query
    query_vec_np = self._to_numpy(query_vec)
    docs, scores = self._find(
        query_vec_np, search_field=search_field, limit=limit, **kwargs
    )

    if isinstance(docs, List):
        docs = self._dict_list_to_docarray(docs)

    return FindResult(documents=docs, scores=scores)

find_batched(queries, search_field='', limit=10, **kwargs)

Find documents in the index using nearest neighbor search.

Parameters:

Name Type Description Default
queries Union[AnyTensor, DocList]

query vector for KNN/ANN search. Can be either a tensor-like (np.array, torch.Tensor, etc.) with a, or a DocList. If a tensor-like is passed, it should have shape (batch_size, vector_dim)

required
search_field str

name of the field to search on. Documents in the index are retrieved based on this similarity of this field to the query.

''
limit int

maximum number of documents to return per query

10

Returns:

Type Description
FindResultBatched

a named tuple containing documents and scores

Source code in docarray/index/backends/weaviate.py
def find_batched(
    self,
    queries: Union[AnyTensor, DocList],
    search_field: str = '',
    limit: int = 10,
    **kwargs: Any,
) -> FindResultBatched:
    """Find documents in the index using nearest neighbor search.

    :param queries: query vector for KNN/ANN search.
        Can be either a tensor-like (np.array, torch.Tensor, etc.) with a,
        or a DocList.
        If a tensor-like is passed, it should have shape (batch_size, vector_dim)
    :param search_field: name of the field to search on.
        Documents in the index are retrieved based on this similarity
        of this field to the query.
    :param limit: maximum number of documents to return per query
    :return: a named tuple containing `documents` and `scores`
    """
    self._logger.debug('Executing `find_batched`')
    if search_field != '':
        raise ValueError(
            'Argument search_field is not supported for WeaviateDocumentIndex.\nSet search_field to an empty string to proceed.'
        )
    embedding_field = self._get_embedding_field()

    if isinstance(queries, Sequence):
        query_vec_list = self._get_values_by_column(queries, embedding_field)
        query_vec_np = np.stack(
            tuple(self._to_numpy(query_vec) for query_vec in query_vec_list)
        )
    else:
        query_vec_np = self._to_numpy(queries)

    da_list, scores = self._find_batched(
        query_vec_np, search_field=search_field, limit=limit, **kwargs
    )

    if len(da_list) > 0 and isinstance(da_list[0], List):
        da_list = [self._dict_list_to_docarray(docs) for docs in da_list]

    return FindResultBatched(documents=da_list, scores=scores)  # type: ignore

num_docs()

Get the number of documents.

Source code in docarray/index/backends/weaviate.py
def num_docs(self) -> int:
    """
    Get the number of documents.
    """
    index_name = self.index_name
    result = self._client.query.aggregate(index_name).with_meta_count().do()
    # TODO: decorator to check for errors
    total_docs = result["data"]["Aggregate"][index_name][0]["meta"]["count"]

    return total_docs

python_type_to_db_type(python_type)

Map python type to database type. Takes any python type and returns the corresponding database column type.

Parameters:

Name Type Description Default
python_type Type

a python type.

required

Returns:

Type Description
Any

the corresponding database column type, or None if python_type is not supported.

Source code in docarray/index/backends/weaviate.py
def python_type_to_db_type(self, python_type: Type) -> Any:
    """Map python type to database type.
    Takes any python type and returns the corresponding database column type.

    :param python_type: a python type.
    :return: the corresponding database column type,
        or None if ``python_type`` is not supported.
    """
    for allowed_type in WEAVIATE_PY_VEC_TYPES:
        if issubclass(python_type, allowed_type):
            return 'number[]'

    py_weaviate_type_map = {
        docarray.typing.ID: 'string',
        str: 'text',
        int: 'int',
        float: 'number',
        bool: 'boolean',
        np.ndarray: 'number[]',
        bytes: 'blob',
    }

    for py_type, weaviate_type in py_weaviate_type_map.items():
        if issubclass(python_type, py_type):
            return weaviate_type

    raise ValueError(f'Unsupported column type for {type(self)}: {python_type}')